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1. Introduction 

Some recent investigations led Louis de Broglie (de Broglie, 1964b, 
1968a, b) to the development of a new thermodynamics which he called 
the thermodynamics of the isolated particle. This theory is an important 
part of the causal formulation of wave mechanics (de Broglie, 1960, 1964a). 
Thus, it is the hypothesis of the existence of a chaotic deep medium, the 
so-called subquantum medium, which was introduced in wave mechanics 
(Bohm & Vigier, 1954) to explain the probability distribution, that led 
de Broglie to take into consideration the interaction of particles with a 
huge hidden thermostat. 

As he did not consider the particle otherwise as a very simple physical 
system, where the meaning of its temperature and entropy could hardly be 
understood, de Broglie ascribed the temperature and entropy values to the 
particle in a somewhat indirect way, namely by means of the thermo- 
dynamic equilibrium of the particle with the hidden thermostat. Although 
this point of view has been well developed, we do not take it by any means 
as necessary. 

As a matter of fact, and since this theory is only the thermodynamic 
aspect of the causal interpretation of wave mechanics, it must necessarily 
rest on the model of the particle describing it as a regular physical wave of 
very weak amplitude but with large values of the field in a small local 
region. Thus, underlying the new thermodynamics, there is the concept of 
the particle as a mathematical entity with a great number of degrees of 
freedom and we think it justified to assign directly to the particle not only 
a heat content but even a temperature and an entropy of its own. Obviously, 
the equilibrium conditions between the particle and the thermostat must 
be retained. 

The aim of the present paper is to develop the thermodynamics of the 
isolated particle from this point of view. We shall see that it allows us to 
find once more the set of results already obtained. Nevertheless, this new 
approach provides some interesting extensions concerning the free energy 
which we shall now take as it is usually defined. 
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2. Some Preliminary Results 

Before going further we must briefly summarise a certain number of 
results which become necessary later. The reader is referred to the biblio- 
graphy for further detail. 

According to the causal formulation of wave mechanics, the corpuscle, 
i.e. the small region where the field takes very great values and where 
nearly all the energy is concentrated, is moving in the physical wave v 
according to a certain 'guidance law' which can be obtained from the wave 
equation. Using the Klein-Gordon equation, that guidance law will take 
the form 

v = - c  (e/c) A (2.1) 
(O~/Ot) -- e V  

where v is the velocity of the corpuscle and ~0 is the phase of the wave v 
(or that of the statistical wave 7 t, which is proportional to v) written in the 
form v = aexp(i~o/h). It can be shown that the later expression for the 
velocity may also be obtained by means of Jacobi's classical theorem 
applied to the generalized Hamilton-Jacobi equation 

1[07  ~ ~ e 2 Da 
eV e ( ~ x + c ' 4 x )  =m~ + l i 2 - -  (2.2) c2~ ~ - a 

formally deduced by a simple decomposition of the wave equation. 
Equation (2.2) generalises the well-known classical equation by introducing 
the quantum potential 

h 2 [2a 
Q .... (2.3) 

mo a 

which one may interpret as expressing the action of wave v upon the motion 
of the corpuscle. It is the purely quantum force deriving from this potential 
that is, for instance, responsible for diffraction phenomena occurring at 
the neighbourhood of the border of a screen. 

It can be seen that the motion of the corpuscle is also governed by the 
Lagrangian 

= -M0 c2v'(1 - f12) _ e V +  ev,A (2.4) 
C 

where one considers Mo as the proper mass varying according to 
/ h 2 D a  \1/2 

where m0 is the usual proper mass. Taking the non-relativistic approxima- 
tion, one may write 

3fo c z - mo e z = Q (2.6) 
and Q becomes 

h ~ V2a 
(2.7) 

Q 2m a 
as can be easily verified by decomposition of the SchrOdinger equation. 
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We have pointed out at the outset, that overlapping with this deterministic 
scheme there is within the present theory a hypothesis of random motion, 
i.e. the postulate of the interaction of the subquantum medium and the 
particle. It follows that we can not know the position of the corpuscle at 
each instant, and consequently we do not know the value which M0(r, t) 
takes at the same instant. Besides, that value generally undergoes a very 
quick change in time, so that we can only calculate its mean value taken 
over the corresponding probability distributions. 

We shall not summarise here the work (Helmholtz, 1884; Boltzmann, 
1904) relating to the analogies between mechanical and thermodynamical 
quantities without interference of statistical concepts, although it turns 
out to be most revealing within the framework of the ideas given above. 
A brief rrsum$ will be given later about the canonical scheme of Helmholtz. 
For the moment we just want to point out that Ludwig Boltzmann in his 
theory of periodic systems (which is the source of Ehrenfest's theory of 
adiabatic invariants) proved the formula 

~. = !8 ~ ~pkdqk (2.8) 

where 8~ is the amount of heat supplied to the periodic system during the 
period r and A = ~ ~pkdqk is Maupertuis' action taken over that same 
period. The reader may find in a paper ofFer  (1962) a detailed study of this 
formula. 

We still want to refer to some points of relativistic thermodynamics, 
namely to emphasise that in the domain studied here the exactness of the 
formulae for relativistic transformation of heat and temperature 

= ~o~/(I - 52); T -  To~/(1 - f12) (2.9) 

will no t  be questioned (de Broglie, 1968a, 1968b; Brotas, 1969). A word 
must also be said about the equation 

3~ = -SMo 5# (2.10) 

for it turns out to be necessary later. It is an equation in relativistic thermo- 
dynamics, closely connected to the Einstein relation between energy and 
mass, and it expresses the variation of the Lagrangian S(' of a given system 
by the heat supply 8~ responsible for the corresponding variation of the 
proper mass Mo; 8Mo ~ is the variation of ~ when all the variables but 
M0 are kept constant. 

3. Fundamental Formulae 
The starting point of wave mechanics was the concept of the corpuscle 

as a system endowed with an internal periodic motion whose frequency 
(cyclic frequency) changes in a relativistic transformation according to 
the law 

vc = Vo~/(1 - flu) (3.1) 
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whereas the transformation law of a wave of frequency v is 

v0 (3.2) 
- V(1 - / 3  2) 

Besides, guidance laws [as that written in (2.1)] arise from the requirement 
of an accordance of phases between the corpuscle and its wave in all the 
Galilean frames of reference. 

It appears to be most tempting to apply Boltzmann's formula (2.7) to the 
internal cyclic motion of the corpuscle, and doing so we shall be led to 
establish a proportionality between Maupertuis' action A and the amount 
of heat absorbed by the corpuscle, the constant of proportionality being 
the proper frequency v0. Since ~ = T3S, write 

vc = CT, S = CAo (3.3) 

where, according to dimensional reasons, the universal constant C is 
proportional to k/h. The equation 

hvc = k T  (3.4) 

setting up a connection between the cyclic frequency and the temperature 
of the corpuscle is the first fundamental formula of the new thermodynamics. 

Yet the second formula in (3.3) is not a relativistic covariant one and that 
is why de Broglie altered it by changing Maupertuis' action into the 
Hamiltonian action 

7 

A = f ~ ' d t  (3.5) 
0 

We notice the consistency of this reasoning with the relativistic formula 
(2.10) and from (1.5) it follows thence 

~Mo S = ~ hv~ ~ = k 3Mo 
T k M~ "C'q~ (3.6) m0 

which leads us to write the second fundamental formula 

S = So + k M~ (3.7) 
mo 

where S is the entropy of the corpuscle, So the part of this entropy that 
does not depend upon the variations of the proper mass, and M0 is given, 
for instance, by (2.6). The physical meaning of this formula will be discussed 
later. 

4. Discussion of  the Fundamental Formulae 

The temperature T defined by (3.4) is ascribed by de Broglie to the hidden 
thermostat with which the particle lies in thermodynamic equilibrium, 
whereas we intend to relate this temperature directly to the corpuscle 
itself, which has cyclic frequency vc. In these conditions, and by (2.9) and 
(3.1), the relativistic covariance of equation (3.4) raises no more doubts, 
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but the questions relating to the thermodynamic equilibrium between the 
thermostat and the particle, namely the equality of their temperatures, call 
for a more detailed examination. 

First of all, the possibility of defining a velocity of the corpuscle in 
respect to the thermostat is certainly meaningless, since otherwise the 
thermostat would constitute a privileged frame of reference, in disagreement 
with the principle of relativity. The thermostat seems, then, to have physical 
properties similar to the ether of Dirac (1951) or the ether of Terletski 
(1960a, b) rather than Kelvin's ether. It follows that any two Galilean 
observers must see the thermostat in exactly the same way, and that means 
that everything turns out to be as if all the corpuscles were stationary in 
respect to the thermostat. 

The same conclusion may be obtained from the proposal of Brotas, 
according to whom thermodynamic equilibrium of two bodies in relativity 
must be defined in terms of the equality of their proper temperatures 
(Brotas, 1969). If  we adopt this definition here it follows from the relativistic 
structure of the thermostat that its temperature must be the same in all 
Galilean frames (this is its proper temperature) and hence the thermo- 
dynamic equilibrium with the corpuscle is assured whatever the corpuscle's 
state of motion may be. 

Another interesting problem is the following: the proper temperatures 
of two non-identical corpuscles are necessarily different, for they correspond 
to different proper masses. The equilibrium with the thermostat implies, 
therefore, that it must behave with respect to these two corpuscles as if it 
had two different temperatures simultaneously, which is not very satis- 
factory. De Broglie suggested that this might be due to some 'resonances', 
where each corpuscle would only interact with some component parts of 
the thermostat, perhaps only with other hidden corpuscles of the same 
nature. 

We wish to point out that this quite singular property seems to be 
closely connected with the very nature of relativistic wave mechanics. 
This may be clarified by noting, for instance, that Dirac's theory involves 
the simultaneous existence of an ocean of positrons, another of anti- 
nucleons, etc., the whole ensemble being quite similar to the hidden thermo- 
stat. Developing a suggestion of Lochak (1968), we point out that the new 
thermodynamics can be reformulated in such a way that one may ascribe 
to the thermostat a unique temperature, which would then be the proper 
temperature of any given particle. That could be done by writing the 
constant C appearing in formulae (3.3) in the form 

C =  m o k  
/~0 h (4.1) 

where mo is the proper mass of the particle in question and/~0 a standard 
mass fixing the temperature of the thermostat. In place of (3.4) we have 

hv c = mo k T  (4.2) 
I~o 
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whereas (3.7) now becomes 

S = So + k Mo (4.3) 
/Zo 

At the moment, it seems too early to choose from these possibilities and, 
after all, this choice is needless as far as the following results are concerned. 

Let us finally mention (de Broglie, 1968b) the striking agreement between 
the classical formula of Planck-Laue written in the form 

U =  M~ 
x/(1 _/32) - Mo d~/(1 -/32) + v.p (4.4) 

and the guidance theory which allows us to write 

act) _ Mo e2 Mo v (4.5) 
at V( 1 _/32) V~ V(1 -/32) 

We thus have 

2 Oqo Mo c2a/(1 - /3  ) = Ot + (v. Vg) = q, (4.6) 

and, if we ascribe to the corpuscle the main properties of a watch of internal 
proper frequency MocZ/h, the corresponding phase will be 

q~l = hv0~/(1 - f12) t = Mo c2~/(1 - f12) t (4.7) 
which means 

d(9 - 91) = 0 (4.8) 

5. The Helmholtz' Canonical Scheme 

The canonical scheme of thermodynamics proposed by Helmholtz is 
essentially based on the introduction of a cyclic variable e defined in such 
a way that the temperature T is its time derivative: 

= & = r ( 5 . 1 )  
,It 

Let ~ be the generalised force corresponding to e. We then have for the 
variation of the energy U 

dU= ~de - p d V =  ~ d t  - p d V  (5.2) 

Comparing this expression with dS= (dU+pdV)/T we have, by (5.1), 

= ~ (5.3) 

If  we now consider a very slow evolution over time (17~ 0), the varia- 
tional equations of motion with the Lagrangian ~q-qP(V, t2 ~) shall be 

aG~(' d I a <<L-,.,.,.,.,.,.,.,~ \ o 
OV= p ~ [ ~ - )  = g (5.4) 
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and that implies 
p~ = S (5.5) 

The expression for the energy will take the form 

�9 O ~  0s  ~ 
U= e T:~-~ + V - ~  - ~4' = T S -  ~q~ (5.6) 

which means that the Lagrangian is equal to the free energy with a sign 
change. This last formula is well known, owing to its role in early investiga- 
tions undertaken by Planck on black body radiation. 

Yet the value of this canonical scheme may be questioned as long as it 
rests upon the introduction of a purely formal variable. Now, the thermo- 
dynamics of the isolated particle allows us to find again the relations 
obtained by Helmholtz, and even to attach to that variable a very clear 
physical meaning. 

In fact, and according to the causal formulation of wave mechanics, we 
may write 

t 

= h [ vcdt (5.7) 
0 

and if we take (3.4) into consideration we shall have 

1 
T = ~  (5.8) 

which is a relation corresponding to the fundamental formula (5.1). It is 
the phase of the wave v that here plays the role of the variable e. If  the 
particle gets some energy from the increase of its proper mass, this amount 
of energy may be expressed by the relation 

~Mo U = g dq~ + dA (5.9) 
d ~ being the generalised force corresponding to the variable ~. By comparison 
with the first law of thermodynamics, we obtain d ~ = R that is (5.3). 

Similarly, Helmholtz formula (5.4) is simply the consequence of the 
fact that q0 is actually a cyclic variable�9 The equation (5.6) may not hold 
here, since it is not satisfactory relativistically. 

6. Hamilton's Principle and the Second Law of  Thermodynamics 

Hamilton's principle of least action is generally described by comparing 
a real motion with very close neighbouring fictitious motions, so that the 
extreme points A and B, as well as the corresponding instants to and q, 
remain unchanged. The real motion is then defined by the conditions 

t I t 1 

f [~q~lModt=O f [~2~lModt>0  (6.1) 
tO tO 

where [35e]M o denotes the variation of ~a when M0 is kept constant. 
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Now, the variation of the proper mass brought about by fluctuations is 
a main property of the new thermodynamics, and this leads us to consider 
those varied paths no longer as virtual paths but rather as paths which may 
actually come about in view of adequate variations of proper mass. These 
must then obey the equation 

t 1 t l  

f 3(<se+ 3 )dt= f (3Se+3: )d =O 
to to 

(6.2) 

But under these assumptions proper mass is no longer a constant in time, 
and then, putting 3M0 ~qo for the part of 3~ ~ depending upon the variation 
of proper mass, we must write 

3Ao = [3AO]Mo + 3~ ~ ~o 32 ~o = [32 ~]Mo + 3~o ~ (6.3) 

We may later verify in equation (6.5) that the term 320 ~q~ is of the third 
order and may be neglected; the equation (6.2) becomes 

t l  

f (3Mo A ~ + [3~e]Mo + [3 2 A~]Mo) d t  = 0 

to 

(6.4) 

The second term being null, according to the first equation (6.1), we obtain 

t I I1 

- f  3Mo~LPdt----(t,--to)'~Mo~= f [32~C,~ (6.5) 
t o tO 

the inequality arising from the second equation (6.1). One then verifies 
that the mean value of 3M0 ~qo taken over the time interval (to, q) is negative 
over the fluctuated paths while it is null over the real one. 

According to (2.10) we know - 3 u  o =L-q ~ to be the amount of heat supplied 
to the particle, and the preceding conclusion may be interpreted by asserting 
that the mean proper mass of the particle has a less value over the real path 
than over the fluctuated ones. The entropy of the thermostat will then have 
a maximum value over that path, and, in view of Boltzmann's formula, it 
must be then more probable than fluctuated paths. An interesting connec- 
tion is thus established by de Broglie between the principle of Carnot and 
that of least action. 

If  we now reason directly about the particle itself, the equation (3.7) 
establishes that the entropy of the particle has a minimum value over the 
real path. But we must now take into consideration (Gibbs, 1902; de Broglie, 
1964b) Gibb's formula P = Ce -s, where S is here the entropy of the particle, 
instead of Boltzmann's, and this just shows that the preceding conclusion 
holds true. Then, when we ascribe thermodynamic quantities directly to 
the particle, we always have a maximum value of the probability over the 
real path. 
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7. The Definition of the Free Energy 

We shall finally consider the important problem of the definition of the 
free energy whose properties must rule the thermodynamical behaviour 
of the particles (Lochak, 1962). 

Since he did not directly attach an entropy and a temperature to the 
particle itself, de Broglie could not keep the usual expression of the free 
energy and that is why he was led to write 

F= Ec + V -  TS (7.1) 

where Ec is the kinetic energy and V the classical potential energy. We here 
no longer have the same conditions and we shall instead adopt the classical 
definition 

F = U -  TS (7.2) 

U, T and S being, respectively, the internal energy, the temperature and 
the entropy of the particle. Now we must write 

U= mo cZ + Ec + V+ Q (7.3) 

and for any reversible transformation (being necessarily an isothermal one) 
it becomes 

~F=~(moeZ+Ec+ V+ Q ) - T ~ S = 3 ( E ~ +  V+ Q ) - ~  (7.4) 

where - ~  is the amount of heat supplied by the particle. 
According to a demonstration of de Broglie which remains true here, 

we know the amount of heat 52 received by the particle to be equal to the 
variation ~ Q of the proper mass arising from that supply of heat 

~.~ = ~Q (7.5) 
and we then have 

SF=  ~(E~ + V) (7.6) 

One may easily see that 3(E~ + V) is just the mechanical work performed by 
the particle, for the expression of the first principle ~U = 3S - ~A, (7.3) 
and (7.5) give -3A = 3(Ec + V). We thus find the result 

8F = -3A (7.7) 

and that means that the work 3A performed by the particle corresponds to 
a loss of exactly the same amount of its free energy. 

These considerations remain essentially unchanged for the irreversible 
transformations; I f  we write that ~ < T3S we shall find that 

3F < -3A (7.8) 

We know from the second law of thermodynamics that an isothermal 
system performs spontaneously its evolution in the sense of a loss of its 
free energy. It follows thence that in quantum systems the jump of an 
electron from an energy level E,, to another level Ek v ~ Em may take place 
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spontaneouslyi f  E m > Ek, since it then involves a decrease o f  the free energy 
of  the system. The stat ionary state with greatest stability is obviously the 
one with lowest value o f  its free energy, tha t  is, the fundamental  state. 

We may  easily find this general result under  an explicit fo rm in the 
particular cases formely studied by  de Broglie. Thus, for the linear oscillator 
and for the s-states of  the hydrogen atom, Ec = 0 and 

3A = -3 (Ec  + V) = - 8  V (7.9) 

But for  these systems V +  Q = c o n s t . ,  3 V = - 3 Q  and then 3 A = 3 Q .  
Taking (7.5) into consideration, we may  write 

3A = T ~ S  (7.10) 

and that  means that  when work is performed by the particle there is a 
decrease of  the potential energy, an increase of  the energy corresponding 
to the quan tum potential and an increase o f  the entropy. The free energy 
always decreases. 

I t  may  he interesting to notice that  when the kinetic energy is zero, 3S 
and 3F  are then propor t ional  to one another,  the ratio of  the two quantities 
being - 1 /T ,  any increase o f  S corresponding always to a decrease o f  F. 
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